Duration of Shh signaling contributes to mDA neuron diversity.

نویسندگان

  • Lindsay Hayes
  • Sherry Ralls
  • Hui Wang
  • Sohyun Ahn
چکیده

Sonic hedgehog (Shh) signaling is critical for various developmental processes including specification of the midbrain dopamine (mDA) neurons in the ventral mesencephalon (vMes). While the timing of Shh and its response gene Gli1 segregates mDA neurons, their overall lineage contribution to mDA neurons heavily overlaps. Here, we demonstrate that the same set of mDA neuron progenitors sequentially respond to Shh signaling (Gli1 expression), induce Shh expression, and then turn off Shh responsiveness. Thus, at any given developmental stage, cells rarely co-express Shh and Gli1. Using Shh(Cre:GFP) mice to delete the Smoothened receptor in the Shh pathway, we demonstrate that the loss of Shh signaling in Shh expressing cells results in a transient increase in proliferation and subsequent depletion of mDA neuron progenitors in the posterior vMes due to the facilitated cell cycle exit. Moreover, the change in duration of Shh signaling in vMes progenitors altered the timing of the contribution to the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) mDA neurons. Taken together, our investigation on the relationship between the Shh-secreting and -responding cells revealed an intricate regulation of induction and cessation of Shh signaling that influences the distribution of mDA neurons in the VTA and SNc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empowerment of Balb/C mouse neuron and glial cells in steroidogenesis after activation of the SHH signaling pathway and co-treatment with pregnenolone

Background: Steroid production has been reported in the asexual tissues of the nervous system. Stimulants are in the normal activity, function and function of the nervous system. Identifying the conduction pathways involved in glucocorticoids and enabling brain parenchymal cells can offset the balance in the active nervous system at old ages when the body is depleted. Therefore, in this stu...

متن کامل

Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway.

Selective degeneration of midbrain dopaminergic (mDA) neurons is associated with Parkinson's disease (PD), and thus an in-depth understanding of molecular pathways underlying mDA development will be crucial for optimal bioassays and cell replacement therapy for PD. In this study, we identified a novel Wnt1-Lmx1a autoregulatory loop during mDA differentiation of ESCs and confirmed its in vivo pr...

متن کامل

Sonic hedgehog regulates discrete populations of astrocytes in the adult mouse forebrain.

Astrocytes are an essential component of the CNS, and recent evidence points to an increasing diversity of their functions. Identifying molecular pathways that mediate distinct astrocyte functions, is key to understanding how the nervous system operates in the intact and pathological states. In this study, we demonstrate that the Hedgehog (Hh) pathway, well known for its roles in the developing...

متن کامل

The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons.

Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions, where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh), whose posttranslational lipid modifications and assembly into multimers enhance its biological potency, potentia...

متن کامل

Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells.

Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 374 1  شماره 

صفحات  -

تاریخ انتشار 2013